


 

Protocol Part II  
 

 
Aims/hypotheses  

Primary hypothesis: Mutations in the HCV core gene arise prior to the development of liver cancer 
and therefore are potential non-invasive biomarkers of elevated HCC risk.
 

   

Secondary hypotheses: Mutations in the HCV core gene are positively selected during IFN/RBV 
treatment; these mutations increase over time; and they resent in the majority of the patients at the 
time of HCC diagnosis.    
 

   

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality 
worldwide (21).  The hepatitis C virus (HCV) is a major cause of HCC and therefore it is critical to 
determine the molecular basis of HCV-induced HCC. Expression of the HCV core gene is heavily 
implicated in the oncogenic potential of chronic HCV infection.  Expression of the core gene can 
immortalize primary hepatocytes (22) and lead to cellular transformation and carcinogenesis (23-31).  
Significantly, clinical studies, mostly conducted in Japan, have revealed that mutations in codons 70 
and 91 are associated with HCC (1-4; 16), interferon (IFN) treatment failure (5-14), and insulin 
resistance (15).  These mutations enhance the IFN-resistance of JFH (20), an isolate of HCV that 
replicates efficiently in cell culture.  We postulate that these, and additional core gene mutations, 
enhance virulence and block both the 

Background/rationale  

anti-proliferative and anti-viral

 

 activities of interferon, thereby 
promoting both hepatocellular carcinogenesis and IFN treatment failure.  

Until recently, little was known about how mutations in the core 
gene might be altering HCV gene expression. We gained a key 
insight into this process when we discovered that mutations in 
codons 70 and 91 regulate the levels of two previously-unknown 
HCV proteins: 70 and 91 minicores (Fig. 1).  70 and 91 minicores 
are members of a newly-identified family of HCV proteins that 
have the C-terminal portion of the classical p21 core protein, but 
lack the N-terminal portion (17).  The discovery of minicores was 
made possible by the use of antibodies that bind to the C-terminal 
portion of the core protein.  
 
To further investigate mutations in codons 70 and 91 and to seek additional mutations associated with 
HCC, we carried out a comprehensive study using multivariable logistic regression to correlate core 
gene sequences with clinical events (16).  We found that mutations in codons 12 and 182 have 
greatly increased odds ratios for HCC risk (OR > 10.0), establishing their likely biological significance.  
We hypothesize that mutations in codons 12, 70, 91, and 182 alter HCV function via changes in 
protein expression that lead to enhanced IFN resistance and increased oncogenic potential. This pilot 
project will explore the possibility that sequence analysis of the HCV core gene can help identify 
patients who have an elevated risk of developing HCC
 

.   

An important objective of the HALT-C trial was to identify factors associated with elevated HCC risk. 
Published data from the HALT-C Trial have analyzed host factors only (78).  We hypothesize that viral 
factors—specifically mutations in the core gene—have prognostic and diagnostic value and can be 
used in combination with host factors to identify patients who have an elevated risk of developing 
HCC and to identify patients who have already developed early-stage HCC.  If this hypothesis is 
correct, our study will advance the goals of the HALT-C Trial by providing a biomarker that may 
improve patient care by allowing more cases of HCC to be identified at an early stage when curative 
surgical interventions are possible.  In addition, our project may yield new insights into the molecular 

Relations to aims of HALT-C study 
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Fig. 1: The core gene expresses minicore 
proteins that have N-termini at codons 70 
and 91  



 

events leading to liver cancer and thus identify novel targets for pharmaceutical interventions to 
prevent the development of liver cancer and/or to delay progression.  
 

Overview:  We will determine whether core gene mutations are associated with incident HCC in the 
United States, as was found in Japan (1) by analyzing sera collected during the HALT-C Trial.  We will 
use pyrosequencing to compare core gene sequences in patients with HCC (cases) and controls. This 
sequencing approach will enhance the sensitivity of our investigation because HCV RNA does not 
circulate as a single sequence, but rather as a “swarm” of closely related sequence variants called a 
quasispecies (67).  Pyrosequencing will allow us to determine the 

Study design, experimental groups 

percentage

 

 of the HCV RNA 
population that has a mutation at each position in the core gene. Based on published data and our 
previous results, we are especially interested in codons 12, 70, 91, and 182. The primary outcome 
measure will be the percentage of cases versus controls in which 50% or more of the viral RNA 
population has a codon 70 mutation at baseline.  Secondary outcomes will include associations 
between mutations in other codons and clinical outcomes, and changes in the quasispecies over time.  

Study design, experimental groups. A nested case-control study will be performed in which core 
gene sequences of all genotype 1b patients who later developed liver cancer (cases) will be 
compared to those of patients who did not (controls).  Three controls will be used for each case. HCV 
RNA populations and clinical data from approximately 45 cases and 135 controls will be analyzed. 
The duration of follow up on controls will be at least as long as on cases.  Because not all genotype 1 
cases were subgenotyped during the HALT-C trial, this will be done as the first step in this study so 
that all possible cases can be identified and included. If possible, cases and controls will be matched 
for baseline histopathology (fibrosis/cirrhosis) and for assignment to one of the two arms of the HALT-
C trial.  Pyrosequencing will be carried out on samples collected at four time points: entry into HALT-
C, at week-8 of IFN/RBV treatment, 9 months after the end of the lead-in phase, and at the time of 
HCC diagnosis (and at a similar time point for the control subjects).   
 
Sample size and power calculation for the primary outcome measure.  This study will include all 
subjects with genotype 1b HCV who developed HCC during the HALT-C Trial, with three controls for 
each case.  The number of cases is expected to be about 45.  The precise number is not yet known 
because not all specimens have been subgenotyped.  To estimate the power of the study, data from 
our cross-sectional analysis of core gene sequences were used (16).  The primary outcome measure 
in this study is the percentage of variants in the viral quasispecies with the 209A mutation (in codon 
70) in cases versus controls in samples collected at the time of entry into the trial.  In our cross-
sectional analysis, 209A was present in 37 of 65 (56%) cases and 74 of 214 (35%) controls.  
Assuming these proportions, with 45 cases and 135 controls, we have a 63% power to detect a 
difference between cases and controls at the 5% significance level using a two-tailed chi square test 
and a 74% power using a one-tailed test, according to nQuery Advisor v.7.0. Multivariable logistic 
regression will be used to determine whether the codon 70 mutation is an independent predictor of 
HCC risk.  Other variables entered into the regression model will include platelet count, age, gender, 
and race/ethnicity.  We acknowledge that this pilot study may not achieve statistical significance; the 
data, however, will be valuable and provide the information needed to design a larger, definitive study.   
 
Methods, data usage
For quasispecies analysis, HCV RNA will be purified from serum samples, as before, using the QiAmp 
viral RNA mini kit (17).  The core gene region will be subjected to RT-PCR. Two amplicons will be 
prepared for each sample to allow the entire core gene and most of the adjacent 5’ untranslated 
region (UTR) to be pyrosequenced on a 454/Roche GS FLX platform, which can analyze amplicons 
400-500 bases in length (68). In order to multiplex samples in the pyrosequencing procedure, 
“barcoded” primers, each containing a unique 8-base sequence tag will be used during the RT-PCR 
step, as previously described (69).  DNA primer design and data analysis will be done in collaboration 
with Dr. Omar Jabado (Mount Sinai DNAcore Facility).  Reactions will be run at the DNA Sequencing 

  



 

and Genotyping Laboratory at Cornell University by Dr. Peter Schweitzer, the laboratory Director.  For 
data analysis, we will incorporate computational methods used in a deep sequencing analysis of HCV 
quasispecies (70). These methods help to distinguish authentic variants in viral populations from 
artifacts introduced during the isolation and sequencing procedures. These methods include the use 
of the PyroNoise program which removes homopolymer errors (71).  A control HCV genome in a 
bacterial plasmid and HCV RNA transcripts will be used to quantify variation arising during the 
isolation and analytical procedure.  We previously used the earlier generation of sequencing methods 
(cloning and sequencing) to characterize the HCV quasispecies in HCV-infected patients and thus are 
skilled in quasispecies data analysis (72).       
 
Secondary outcome measures. Methods of quasispecies analysis (67; 70; 72-77) will be used to 
determine the association between clinical outcomes (diagnosis of HCC, disease progression, death) and 
mutations in codons 12, 70, 91, and 182 specifically and in other regions of the core gene and in the 5’ 
UTR .  Analysis will be done on samples obtained at entry into the trial, at week 8 during treatment, at 9 
months after the end of the lead-in phase (18-19), and at the time of HCC diagnosis.  Because this is an 
exploratory study, no correction for repeat testing will be made.    
 
Anticipated results
We expect that core gene mutations will be more prevalent among patients who later developed HCC 
and we expect the percentage of the viral quasispecies with one or more core gene mutations to 
increase over time.  If our results are similar to those obtained in Japan (1), we expect multivariable 
analysis to show that core gene mutations are independently associated with increased HCC risk. 
Because of the limited sample size, our results may not achieve statistical significance; however, they 
will provide the information needed to design a larger, definitive future study.  

  

 

Statistical support will be provided by Dr. James Godbold, a Ph.D. biostatistician in the Department of 
Preventive Medicine at the Mount Sinai School of Medicine, and Erin Moshier, an MS-level 
biostatistician, in the same department. 

Statistical support 

 

 
HALT-C samples to be used in the study (complete Part III:  Sample Requirements) 

Costs for data analysis and for obtaining samples from the repository will be paid by NIH R21 
CA152514                                                                        

Financial issues (e.g., cost for data analysis and obtaining samples from Repository) 
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Protocol Part III: Sample Requirements. (link to web site with actual sample availability) 
 
Visit Liver 

# patients, 
mm* 

Blood 
# patients, 

ml 

DNA 
# patients, 

ug 

Liver Biopsy Slides 
# patients, 

slides/patient 

Other (describe) 
# pts, amount 

Screen 1      
Screen 2      
Baseline  180 

0.5 ml 
   

Lead in  
Week 4 

     

Week 8  180 
0.5 ml 

   

Week 12      
W16      
Week 20      
Week 24      
Randomized 
Month 9 

 180  
0.5 ml 

   

Month 12      
Month 15      
Month 18      
Month 21      
Month 24      
Month 27      
Month 30      
Month 33      
Month 36      
Month 39      
Month 42      
Month 45      
Month 48      
Post-
treatment 

     

Responders 
W30 

     

W36      
W42      
W48      
W60      
W72      
 
* Assume 1 mm tissue weighs about 0.75 mg (= 0.5 mm2 X Π X density of tissue) 
 
Data needed (please specify):

 

  Demographic features (age, date of birth, sex, race, ethnicity); 
baseline characteristics (fibrosis stage, platelet count, AST, ALT, smoking habits, esophageal 
bleeding history); HCV viral load at all time points 

Comments (if any)
 

:   

1. In addition to the samples indicated in the table above, we also need a sample from each case 
at the time of HCC diagnosis, or a sample collected as soon after the diagnosis as possible; 



 

and we also need three control samples for each case (the control samples need to have a 
similar length of follow up as the cases).  

 
2. The study is limited to subjects with genotype 1b HCV. Because the subgenotype was not 

determined for all subjects with genotype 1 HCV, we need the baseline sample from 
approximately 17 subjects so that we can determine the subgenotype.  

 
3. To the extent that it is possible, we would like to match “cases” (subjects who developed HCC) 

with “controls” (subjects who did not develop HCC at any time during the trial) on the basis of 
fibrosis/cirrhosis stage at baseline and on the group assignment during the randomization 
phase.  

 
 
 
 
 
 
 


